Copied to
clipboard

G = C2×C329SD16order 288 = 25·32

Direct product of C2 and C329SD16

direct product, metabelian, supersoluble, monomial

Aliases: C2×C329SD16, C62.132D4, (C3×C6)⋊9SD16, C63(D4.S3), (C3×D4).42D6, (C6×D4).15S3, (C3×C12).99D4, (C2×C12).151D6, C3218(C2×SD16), C12.58(C3⋊D4), C12.99(C22×S3), C4.6(C327D4), (C3×C12).103C23, (C6×C12).142C22, C324C823C22, C324Q818C22, (D4×C32).27C22, C22.22(C327D4), (D4×C3×C6).8C2, D4.7(C2×C3⋊S3), C34(C2×D4.S3), (C2×D4).4(C3⋊S3), (C3×C6).280(C2×D4), C6.121(C2×C3⋊D4), C4.13(C22×C3⋊S3), (C2×C324C8)⋊10C2, (C2×C324Q8)⋊15C2, C2.10(C2×C327D4), (C2×C6).100(C3⋊D4), (C2×C4).47(C2×C3⋊S3), SmallGroup(288,790)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C2×C329SD16
C1C3C32C3×C6C3×C12C324Q8C2×C324Q8 — C2×C329SD16
C32C3×C6C3×C12 — C2×C329SD16
C1C22C2×C4C2×D4

Generators and relations for C2×C329SD16
 G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=c-1, ce=ec, ede=d3 >

Subgroups: 628 in 204 conjugacy classes, 77 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C32, Dic3, C12, C2×C6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3×C6, C3×C6, C3×C6, C3⋊C8, Dic6, C2×Dic3, C2×C12, C3×D4, C3×D4, C22×C6, C2×SD16, C3⋊Dic3, C3×C12, C62, C62, C2×C3⋊C8, D4.S3, C2×Dic6, C6×D4, C324C8, C324Q8, C324Q8, C2×C3⋊Dic3, C6×C12, D4×C32, D4×C32, C2×C62, C2×D4.S3, C2×C324C8, C329SD16, C2×C324Q8, D4×C3×C6, C2×C329SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C3⋊S3, C3⋊D4, C22×S3, C2×SD16, C2×C3⋊S3, D4.S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, C2×D4.S3, C329SD16, C2×C327D4, C2×C329SD16

Smallest permutation representation of C2×C329SD16
On 144 points
Generators in S144
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 97)(8 98)(9 115)(10 116)(11 117)(12 118)(13 119)(14 120)(15 113)(16 114)(17 129)(18 130)(19 131)(20 132)(21 133)(22 134)(23 135)(24 136)(25 110)(26 111)(27 112)(28 105)(29 106)(30 107)(31 108)(32 109)(33 80)(34 73)(35 74)(36 75)(37 76)(38 77)(39 78)(40 79)(41 84)(42 85)(43 86)(44 87)(45 88)(46 81)(47 82)(48 83)(49 92)(50 93)(51 94)(52 95)(53 96)(54 89)(55 90)(56 91)(57 68)(58 69)(59 70)(60 71)(61 72)(62 65)(63 66)(64 67)(121 141)(122 142)(123 143)(124 144)(125 137)(126 138)(127 139)(128 140)
(1 141 48)(2 41 142)(3 143 42)(4 43 144)(5 137 44)(6 45 138)(7 139 46)(8 47 140)(9 136 55)(10 56 129)(11 130 49)(12 50 131)(13 132 51)(14 52 133)(15 134 53)(16 54 135)(17 116 91)(18 92 117)(19 118 93)(20 94 119)(21 120 95)(22 96 113)(23 114 89)(24 90 115)(25 69 39)(26 40 70)(27 71 33)(28 34 72)(29 65 35)(30 36 66)(31 67 37)(32 38 68)(57 109 77)(58 78 110)(59 111 79)(60 80 112)(61 105 73)(62 74 106)(63 107 75)(64 76 108)(81 97 127)(82 128 98)(83 99 121)(84 122 100)(85 101 123)(86 124 102)(87 103 125)(88 126 104)
(1 136 108)(2 109 129)(3 130 110)(4 111 131)(5 132 112)(6 105 133)(7 134 106)(8 107 135)(9 76 48)(10 41 77)(11 78 42)(12 43 79)(13 80 44)(14 45 73)(15 74 46)(16 47 75)(17 100 32)(18 25 101)(19 102 26)(20 27 103)(21 104 28)(22 29 97)(23 98 30)(24 31 99)(33 87 119)(34 120 88)(35 81 113)(36 114 82)(37 83 115)(38 116 84)(39 85 117)(40 118 86)(49 58 143)(50 144 59)(51 60 137)(52 138 61)(53 62 139)(54 140 63)(55 64 141)(56 142 57)(65 127 96)(66 89 128)(67 121 90)(68 91 122)(69 123 92)(70 93 124)(71 125 94)(72 95 126)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(17 19)(18 22)(21 23)(25 29)(26 32)(28 30)(34 36)(35 39)(38 40)(41 43)(42 46)(45 47)(49 53)(50 56)(52 54)(57 59)(58 62)(61 63)(65 69)(66 72)(68 70)(73 75)(74 78)(77 79)(81 85)(82 88)(84 86)(89 95)(91 93)(92 96)(97 101)(98 104)(100 102)(105 107)(106 110)(109 111)(113 117)(114 120)(116 118)(122 124)(123 127)(126 128)(129 131)(130 134)(133 135)(138 140)(139 143)(142 144)

G:=sub<Sym(144)| (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,113)(16,114)(17,129)(18,130)(19,131)(20,132)(21,133)(22,134)(23,135)(24,136)(25,110)(26,111)(27,112)(28,105)(29,106)(30,107)(31,108)(32,109)(33,80)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78)(40,79)(41,84)(42,85)(43,86)(44,87)(45,88)(46,81)(47,82)(48,83)(49,92)(50,93)(51,94)(52,95)(53,96)(54,89)(55,90)(56,91)(57,68)(58,69)(59,70)(60,71)(61,72)(62,65)(63,66)(64,67)(121,141)(122,142)(123,143)(124,144)(125,137)(126,138)(127,139)(128,140), (1,141,48)(2,41,142)(3,143,42)(4,43,144)(5,137,44)(6,45,138)(7,139,46)(8,47,140)(9,136,55)(10,56,129)(11,130,49)(12,50,131)(13,132,51)(14,52,133)(15,134,53)(16,54,135)(17,116,91)(18,92,117)(19,118,93)(20,94,119)(21,120,95)(22,96,113)(23,114,89)(24,90,115)(25,69,39)(26,40,70)(27,71,33)(28,34,72)(29,65,35)(30,36,66)(31,67,37)(32,38,68)(57,109,77)(58,78,110)(59,111,79)(60,80,112)(61,105,73)(62,74,106)(63,107,75)(64,76,108)(81,97,127)(82,128,98)(83,99,121)(84,122,100)(85,101,123)(86,124,102)(87,103,125)(88,126,104), (1,136,108)(2,109,129)(3,130,110)(4,111,131)(5,132,112)(6,105,133)(7,134,106)(8,107,135)(9,76,48)(10,41,77)(11,78,42)(12,43,79)(13,80,44)(14,45,73)(15,74,46)(16,47,75)(17,100,32)(18,25,101)(19,102,26)(20,27,103)(21,104,28)(22,29,97)(23,98,30)(24,31,99)(33,87,119)(34,120,88)(35,81,113)(36,114,82)(37,83,115)(38,116,84)(39,85,117)(40,118,86)(49,58,143)(50,144,59)(51,60,137)(52,138,61)(53,62,139)(54,140,63)(55,64,141)(56,142,57)(65,127,96)(66,89,128)(67,121,90)(68,91,122)(69,123,92)(70,93,124)(71,125,94)(72,95,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,19)(18,22)(21,23)(25,29)(26,32)(28,30)(34,36)(35,39)(38,40)(41,43)(42,46)(45,47)(49,53)(50,56)(52,54)(57,59)(58,62)(61,63)(65,69)(66,72)(68,70)(73,75)(74,78)(77,79)(81,85)(82,88)(84,86)(89,95)(91,93)(92,96)(97,101)(98,104)(100,102)(105,107)(106,110)(109,111)(113,117)(114,120)(116,118)(122,124)(123,127)(126,128)(129,131)(130,134)(133,135)(138,140)(139,143)(142,144)>;

G:=Group( (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,113)(16,114)(17,129)(18,130)(19,131)(20,132)(21,133)(22,134)(23,135)(24,136)(25,110)(26,111)(27,112)(28,105)(29,106)(30,107)(31,108)(32,109)(33,80)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78)(40,79)(41,84)(42,85)(43,86)(44,87)(45,88)(46,81)(47,82)(48,83)(49,92)(50,93)(51,94)(52,95)(53,96)(54,89)(55,90)(56,91)(57,68)(58,69)(59,70)(60,71)(61,72)(62,65)(63,66)(64,67)(121,141)(122,142)(123,143)(124,144)(125,137)(126,138)(127,139)(128,140), (1,141,48)(2,41,142)(3,143,42)(4,43,144)(5,137,44)(6,45,138)(7,139,46)(8,47,140)(9,136,55)(10,56,129)(11,130,49)(12,50,131)(13,132,51)(14,52,133)(15,134,53)(16,54,135)(17,116,91)(18,92,117)(19,118,93)(20,94,119)(21,120,95)(22,96,113)(23,114,89)(24,90,115)(25,69,39)(26,40,70)(27,71,33)(28,34,72)(29,65,35)(30,36,66)(31,67,37)(32,38,68)(57,109,77)(58,78,110)(59,111,79)(60,80,112)(61,105,73)(62,74,106)(63,107,75)(64,76,108)(81,97,127)(82,128,98)(83,99,121)(84,122,100)(85,101,123)(86,124,102)(87,103,125)(88,126,104), (1,136,108)(2,109,129)(3,130,110)(4,111,131)(5,132,112)(6,105,133)(7,134,106)(8,107,135)(9,76,48)(10,41,77)(11,78,42)(12,43,79)(13,80,44)(14,45,73)(15,74,46)(16,47,75)(17,100,32)(18,25,101)(19,102,26)(20,27,103)(21,104,28)(22,29,97)(23,98,30)(24,31,99)(33,87,119)(34,120,88)(35,81,113)(36,114,82)(37,83,115)(38,116,84)(39,85,117)(40,118,86)(49,58,143)(50,144,59)(51,60,137)(52,138,61)(53,62,139)(54,140,63)(55,64,141)(56,142,57)(65,127,96)(66,89,128)(67,121,90)(68,91,122)(69,123,92)(70,93,124)(71,125,94)(72,95,126), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,19)(18,22)(21,23)(25,29)(26,32)(28,30)(34,36)(35,39)(38,40)(41,43)(42,46)(45,47)(49,53)(50,56)(52,54)(57,59)(58,62)(61,63)(65,69)(66,72)(68,70)(73,75)(74,78)(77,79)(81,85)(82,88)(84,86)(89,95)(91,93)(92,96)(97,101)(98,104)(100,102)(105,107)(106,110)(109,111)(113,117)(114,120)(116,118)(122,124)(123,127)(126,128)(129,131)(130,134)(133,135)(138,140)(139,143)(142,144) );

G=PermutationGroup([[(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,97),(8,98),(9,115),(10,116),(11,117),(12,118),(13,119),(14,120),(15,113),(16,114),(17,129),(18,130),(19,131),(20,132),(21,133),(22,134),(23,135),(24,136),(25,110),(26,111),(27,112),(28,105),(29,106),(30,107),(31,108),(32,109),(33,80),(34,73),(35,74),(36,75),(37,76),(38,77),(39,78),(40,79),(41,84),(42,85),(43,86),(44,87),(45,88),(46,81),(47,82),(48,83),(49,92),(50,93),(51,94),(52,95),(53,96),(54,89),(55,90),(56,91),(57,68),(58,69),(59,70),(60,71),(61,72),(62,65),(63,66),(64,67),(121,141),(122,142),(123,143),(124,144),(125,137),(126,138),(127,139),(128,140)], [(1,141,48),(2,41,142),(3,143,42),(4,43,144),(5,137,44),(6,45,138),(7,139,46),(8,47,140),(9,136,55),(10,56,129),(11,130,49),(12,50,131),(13,132,51),(14,52,133),(15,134,53),(16,54,135),(17,116,91),(18,92,117),(19,118,93),(20,94,119),(21,120,95),(22,96,113),(23,114,89),(24,90,115),(25,69,39),(26,40,70),(27,71,33),(28,34,72),(29,65,35),(30,36,66),(31,67,37),(32,38,68),(57,109,77),(58,78,110),(59,111,79),(60,80,112),(61,105,73),(62,74,106),(63,107,75),(64,76,108),(81,97,127),(82,128,98),(83,99,121),(84,122,100),(85,101,123),(86,124,102),(87,103,125),(88,126,104)], [(1,136,108),(2,109,129),(3,130,110),(4,111,131),(5,132,112),(6,105,133),(7,134,106),(8,107,135),(9,76,48),(10,41,77),(11,78,42),(12,43,79),(13,80,44),(14,45,73),(15,74,46),(16,47,75),(17,100,32),(18,25,101),(19,102,26),(20,27,103),(21,104,28),(22,29,97),(23,98,30),(24,31,99),(33,87,119),(34,120,88),(35,81,113),(36,114,82),(37,83,115),(38,116,84),(39,85,117),(40,118,86),(49,58,143),(50,144,59),(51,60,137),(52,138,61),(53,62,139),(54,140,63),(55,64,141),(56,142,57),(65,127,96),(66,89,128),(67,121,90),(68,91,122),(69,123,92),(70,93,124),(71,125,94),(72,95,126)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(17,19),(18,22),(21,23),(25,29),(26,32),(28,30),(34,36),(35,39),(38,40),(41,43),(42,46),(45,47),(49,53),(50,56),(52,54),(57,59),(58,62),(61,63),(65,69),(66,72),(68,70),(73,75),(74,78),(77,79),(81,85),(82,88),(84,86),(89,95),(91,93),(92,96),(97,101),(98,104),(100,102),(105,107),(106,110),(109,111),(113,117),(114,120),(116,118),(122,124),(123,127),(126,128),(129,131),(130,134),(133,135),(138,140),(139,143),(142,144)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D6A···6L6M···6AB8A8B8C8D12A···12H
order122222333344446···66···6888812···12
size11114422222236362···24···4181818184···4

54 irreducible representations

dim11111222222224
type++++++++++-
imageC1C2C2C2C2S3D4D4D6D6SD16C3⋊D4C3⋊D4D4.S3
kernelC2×C329SD16C2×C324C8C329SD16C2×C324Q8D4×C3×C6C6×D4C3×C12C62C2×C12C3×D4C3×C6C12C2×C6C6
# reps11411411484888

Matrix representation of C2×C329SD16 in GL6(𝔽73)

100000
010000
001000
000100
0000720
0000072
,
800000
0640000
001000
000100
000080
00004064
,
6400000
080000
001000
000100
000010
000001
,
010000
7200000
00126000
0028000
00002810
00003145
,
100000
0720000
0011000
0007200
000010
0000972

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[8,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,40,0,0,0,0,0,64],[64,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,12,28,0,0,0,0,60,0,0,0,0,0,0,0,28,31,0,0,0,0,10,45],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,10,72,0,0,0,0,0,0,1,9,0,0,0,0,0,72] >;

C2×C329SD16 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_9{\rm SD}_{16}
% in TeX

G:=Group("C2xC3^2:9SD16");
// GroupNames label

G:=SmallGroup(288,790);
// by ID

G=gap.SmallGroup(288,790);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,254,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽